Qı	Question		Answer	Mark	Guidance
1	(a)	(i)		4	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC
			M1		
			p-orbitals overlap (to form pi/ π -bonds) \checkmark		IGNORE p-orbitals overlap to form sigma bonds
			M2 π -bond(s) are <u>delocalised</u> in structure B \checkmark		ALLOW electrons are delocalised in structure B IGNORE B has delocalised structure or ring (must be electrons or π-bonds)
			M3 π -bonds are localised/between two carbons in structure A \checkmark		ALLOW π -electrons/p-orbital overlap localised/between two carbons in structure A ALLOW p-orbitals overlap with one other carbon IGNORE electrons are localised OR structure A has localised structure (must be π -bonds/ π -electrons/p-orbital overlap) ALLOW labelled diagram showing overlap of p-orbitals between two carbon atoms DO NOT ALLOW C=C in this diagram
			AND AND		Diagram for structure A must show the full ring for M4 IGNORE C=C in M4 diagram
			Diagrams show correct position of delocalised and		IGNORE charge density
			localised π-bonds/π-electrons		DO NOT ALLOW electronegativity
			OR correct position of p-orbital overlap ✓		Structures do not need to be labelled A and B if the description matches the structure
			requires delocalised/delocalized spelled correctly and used in correct context		

Question	Answer	Mark	Guidance
(i	i) structure B/delocalised structure is (more) stable	2	ALLOW structure B is low in energy
	\checkmark		IGNORE structure B is less reactive
	structure B is a better because (enthalpy change of hydrogenation for benzene is) less		ALLOW enthalpy change/hydrogenation for benzene is less (negative) than $3 \times (-)119$
	(exothermic) than (-) 357 (kJ mol ⁻¹)		IGNORE more positive than (-)357 kJ mol ⁻¹
	\checkmark		ALLOW enthalpy change is less than 3x enthalpy change for cyclohexene
			ALLOW structure B is more stable by 149 kJ mol ⁻¹ (2 marks)
			DO NOT ALLOW more/less energy needed for the reaction
			Answer must refer to data given in the question and must be a comparison
			IGNORE 360 kJ mol ⁻¹
			No marks can be awarded if structure A is selected
(b)		2	
			First curly arrow must come from bond not from C atom
	curly arrow from C–N bond to N^+ 🗸		ALLOW first curly arrow to nitrogen atom OR to positive charge on nitrogen atom
			ALLOW second curly arrow from negative charge on fluoride ion
	curly arrow from lone pair on fluoride ion to positive charge on benzene ring		ALLOW second curly arrow to carbon atom with positive charge

Q	luesti	on	Answer	Mark	Guidance
	(c)		$(CH_3)_2CHBr + FeBr_3 \longrightarrow (CH_3)_2CH^+ + FeBr_4^-$	1	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous
					ALLOW positive charge anywhere on the electrophile
	(d)	(i)	First reactant = HNO₂ ✓	3	ALLOW NaNO ₂ + HCI OR HNO ₂ + HCI
					IGNORE conditions/concentration
			Second reactant =		
			Br		ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous
			∽ NH₂		
			Third reactant =		ALLOW
					О
			ОН и		

Question	Answer	Mark	Guidance
(ii)	FIRST CHECK THE ANSWER ON THE ANSWER LINE IF answer = 1.35 (g) award 3 marks IF answer = 0.54 (g) award 2 marks (no scale-up) IF answer = 0.216 (g) award 2 marks (incorrect scale-up)	3	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC If there is an alternative answer, check to see if there is any ECF credit possible ALLOW ECF from incorrect amount, scale-up or molar mass
	$n(\text{compound D}) = 1.73/346 = 0.00500 \text{ mol } \checkmark$ $n(1,3\text{-diaminobenzene}) \text{ required } = 100/40 \times 0.005$ $= 0.0125 \text{ mol } \checkmark$ Molar mass of 1,3-diaminobenzene = 108 (g mol ⁻¹) AND Mass of 1,3-diaminobenzene = (108)(0.0125) = 1.35 g \checkmark		Alternative 1 n(compound D) = $1.73/346 = 0.00500 \text{ mol}$ Molar mass of 1,3-diaminobenzene = 108 (g mol^{-1}) AND Mass of 1,3-diaminobenzene = $(0.00500)(108) = 0.540 \text{ g}$ Mass of 1,3-diaminobenzene required = $(0.540)(100/40) =$ 1.35 g Alternative 2 346 g gives 108 g 1.73 g gives 108/364 x 1.73 = 0.54 g 0.54/40 x100 = 1.35 g
(iii)	(compound D has) two chiral centres ✓	3	ALLOW (Compound D) has two asymmetric carbons OR has two stereocentres
	Four optical isomers exist ✓		ALLOW four enantiomers OR two pairs of enantiomers
	(Synthesis could) use enzymes OR bacteria OR use (chemical) chiral synthesis OR <u>chiral</u> catalysts OR use natural chiral molecules OR single isomers (as starting materials)		INDEPENDENT MARK ALLOW biological catalysts ALLOW <u>chiral</u> transition metal complex/catalyst OR <u>stereoselective</u> transition metal complex/catalyst ALLOW ' <u>chiral</u> pool'/chiral auxiliary
	Total	18	

Q	Question		Answer	Marks	Guidance
2	(a)		Nitrogen lone pair accepts a proton/H ⁺ ✓ <i>Requires position of lone pair on N</i>	1	DO NOT ALLOW Nitrogen/N lone pair accepts hydrogen Proton/H ⁺ is required ALLOW nitrogen donates a lone pair IGNORE NH ₂ group donates a lone pair
	(b)		$ \begin{array}{c} & & \\ & & $	1	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous DO NOT ALLOW NO_2 $H = 3_2$ $H = 2_2O$ OH $H = 2_2O$
	(c)		$\begin{array}{c} \overset{Br}{\underset{OH}{\overset{+}}} \overset{HO_2}{\underset{OH}{\overset{+}}} & \overset{Br}{\underset{OH}{\overset{+}}} \overset{HO_2}{\underset{OH}{\overset{+}}} & \overset{HO_2}{\underset{OH}{\overset{+}}} & \overset{HO_2}{\underset{OH}{\overset{+}}} & \overset{HO_2}{\underset{OH}{\overset{+}}} & \overset{HO_2}{\underset{OH}{\overset{+}}} \\ \end{array}$	4	ALLOW ⁺ NO ₂ OR NO ₂ ⁺ ALLOW first curly arrow from the ring OR from within the ring to any part of the NO ₂ ⁺ including the + charge DO NOT ALLOW intermediate with broken ring covering less than half the ring or incorrect orientation of broken ring + must be within the br ken ring ALLOW non-delocalized (Kekulé) structures with carbocation on either side of Br/NO ₂ substituents DO NOT ALLOW M1 if a second arrow used on the diagram DO NOT ALLOW M3 ecf if arrow does not come from C-Br bond If OH missing on intermediate do not award M2. If OH missing on final product do not award M4
	(d)	(i)	hydrochloric acid/HC $l \checkmark$	1	ALLOW conc / dilute HCl

Question	Answer	Marks	Guidance	
(ii)	4-amino-3,5-dibromophenol ✓	1	ALLOW 3,5-dibromo-4-aminophenol ALLOW 2,6-dibromo-4-hydroxyphenylamine ALLOW 2,6-dibromo-4-hydroxy(-1-)aminobenzene OR (1-)amino-2,6-dibromo-4-hydroxybenzene ALLOW absence of hyphens numbers must be clearly separated ALLOW full stops OR spaces	
(iii)	$ \begin{array}{c} NH_2 \\ OH \end{array} + 2 _2 \end{array} \xrightarrow{Br} \begin{array}{c} NH_2 \\ OH \end{array} + 2 HB \\ OH \end{array} $	1	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous	
(iv)	NH ₂ ONa ✓	1	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous ALLOW –O ⁻ Na ⁺ OR –O ⁻ DO NOT ALLOW –O-Na	
(e) (i)	dyes/dyestuffs/pigments/food colourings ✓	1	ALLOW indicators / biological stains DO NOT ALLOW unqualified paint or food	

Question	Answer	Marks	Guidance
(ii)		5	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous No alternative pathway possible
	reaction 1 HNO ₂ (with or without HC <i>l</i>) OR NaNO ₂ + HC <i>l</i> \checkmark		ALLOW dilute H ₂ SO ₄ but NOT conc H ₂ SO ₄ ALLOW conc HC <i>l</i>
	temp <10 °C ✓ I		
	compound $\mathbf{B} = \bigcup_{OH} \checkmark$		
	reaction 2 CuI 🗸		
	reaction 3 alkali(ne) ✓		ALLOW KOH(aq)/NaOH(aq)/OH ⁻ (aq) IGNORE temp < 10°C DO NOT ALLOW heat/boil/warm DO NOT ALLOW use of phenol in M5
	Total	16	

Q	uesti	on	Answer	Mark	Guidance
3	(a)	(i)	donates a lone pair (on N) OR accepts a proton/H ⁺ ✓	1	IGNORE 'forms a dative covalent bond' (no direction of lone pair) ALLOW 'forms a dative covalent bond with/to H^+ ' ALLOW mark for N: $\rightarrow H^+$ (can be from correct equation)
		(ii)	$(C_2H_5NH_3^+)_2SO_4^{2-} \checkmark$ $C_2H_5NH_3^+ CH_3COO^- \checkmark$	2	ALLOW $(C_2H_5NH_3)_2 SO_4$ DO NOT ALLOW $(C_2H_5NH_3) HSO_4 OR (C_2H_5NH_3^+) HSO_4^-$ brackets not required ALLOW $(C_2H_5NH_3) (CH_3COO) OR (C_2H_5NH_3^+) (CH_3COO^-)$ brackets not required ALLOW separate ions with or without a '+' sign between them, e.g. $C_2H_5NH_3^+ + CH_3COO^-$
	(b)	(i)	↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	2	In diazonium ion, IGNORE CI ⁻ ALLOW '+' sign up to halfway along triple bond from left-hand N In compound B , ALLOW –OH ionised as –O ⁻ ALLOW –COOH ionised as COO ⁻
		(ii)	conditions = alkaline /OH [−] AND use = dye/pigment/colouring ✓	1	BOTH responses required for one mark ALLOW named alkali, e.g. NaOH/KOH ALLOW base IGNORE references to temperature ALLOW use = indicator

Question	Answer	Mark	Guidance
(b) (iii)	Organic product:		IGNORE phenoxide: O [−] OR O [−] Na ⁺
	COO [−] Na ⁺ √		ALLOW COO ⁻ OR COONa
	Other products: CO ₂ AND H ₂ O \checkmark	2	ALLOW H_2CO_3 Note: must be formulae and not names (in question)
(c)	$\stackrel{+}{\bigwedge} = N + H_2O$		ALLOW N_2^+ on structural formula
			ALLOW $C_6H_5N_2^+$ + $H_2O \rightarrow C_6H_5OH + N_2 + H^+$
	↓		ALLOW $C_6H_5N_2CI + H_2O \rightarrow C_6H_5OH + N_2 + HCI$
	$OH + N_2 + H^+$	1	If + charge shown, IGNORE its position
	Total	9	
		-	l

Question		on	Expected Answers	Marks	Additional Guidance
4	а			1	ALLOW * in place of circle ALLOW if circle extends to include OH
		ii	 Mark 1 – production of a single isomer is more expensive/difficult OR separation of the single isomer is expensive/difficult Mark 2 – one of the isomers is more (pharmacologically) active or one of 	4	IGNORE any reference to dosage
			the isomers might have adverse/harmful/nasty side effects ✓ Marks 3 and 4 – problems are overcome by using: Enzymes/bacteria/biological catalyst Chiral synthesis Chiral catalyst or transition metal complex Start with a natural chiral molecule or chiral pool any		ALLOW one is more effective/works (better) DO NOT ALLOW use naturally occurring isomer unless stated that it is a chiral compound DO NOT ALLOW transition metal ion DO NOT ALLOW pool synthesis Chiral pool synthesis scores 1 (not 2) marks
	q	i	H_2C H_2 + NH_3 \rightarrow HO- $CH_2-CH_2-NH_2$	1	ALLOW HO NH ₂ ALLOW epoxy ethane as C_2H_4O , $(CH_2)_2O$, CH_2OCH_2 ALLOW product as $HO(CH_2)_2NH_2$ DO NOT ALLOW product as C_2H_7NO
		ii	HO−CH ₂ −CH ₂ −NH−CH ₂ −CH ₂ −OH ✓	1	ALLOW (CH ₂) ₂ ALLOW displayed/skeletal formula DO NOT ALLOW molecular formula

Ques	tion	Expected Answers	Marks	Additional Guidance
	; i	HO— CH_2 — CH_2 — $NH_3^+ CI^-$ Must show CI^- ion \checkmark	1	ALLOW HOCH ₂ CH ₂ NH ₃ Cl if formula is correct and both charges not shown ALLOW (CH ₂) ₂ / any correct unambiguous structure DO NOT ALLOW ions joined by covalent bonds
	ii	HO—CH ₂ —CH ₂ —NH ₃ ⁺ HS ⁻ Must show HS ⁻ ion \checkmark	1	ALLOW if formula is correct and both charges not shown ALLOW $(CH_2)_2$ / any correct unambiguous structure ALLOW $(HO-CH_2-CH_2-NH_3^+)_2 S^{2-}$
	1 i	Both NH₂ and COOH are joined to the same C ✓	1	ALLOW H_2N C CO_2H or $RCH(NH_2)CO_2H$ R The 4 groups/atoms attached to the C can be in any order but CH must be adjacent. () not essential
	ii	$HO-CH_2-CH_2-NH_2 + 2[O] \longrightarrow HO-C-CH_2-NH_2 + H_2O_{\checkmark}$	1	ALLOW (CH ₂) ₂ DO NOT ALLOW molecular formula
•	i	Question 5e is followed by two blank lined pages (15 and 16) which ca Please check to see whether or not pages 15 or 16 have been used	ndidates	s can use instead of requesting additional paper.

Question	Expected Answers	Marks	Additional Guidance
e i	Isomer F H H H H HO C C C - C - NH ₂ H H H H H \checkmark	2	ALLOW HO(CH ₂) ₄ NH ₂ / ALLOW any correct unambiguous structure of 1-aminobutan-4-ol
	Isomer G H OH H H H H H H H H H H H H H		ALLOW CH ₃ CH(OH)CH(NH ₂)CH ₃ ALLOW any correct unambiguous structure of 2-aminobutan-3-o
	Total	13	